
University of Oklahoma

Intelligent Data Analytics

DSA 5103

Final Project

Daniel Brumley
dbrumley90@gmail.com

December 16, 2016

Contents
Executive Summary 2

Background 3
Problem Description . 3
Model Stacking . 3

Analysis 5
Initial Impressions and Preprocessing . 5
Feature selection . 5
Model Selection and Validation . 6

Results 8

Conclusion 9

References 10

Appendix 11
Appendix A . 11
Appendix B . 12

Appendix B.1 . 12
Appendix B.2 . 13

Appendix C . 14
Appendix D . 15

1

Executive Summary

From March to May of 2016, Santander Bank hosted a challenge on the data science competitions website,
Kaggle. The goal of the competition was to correctly identify a customer as satisfied or unsatisfied with
Santander’s services. More than 5, 000 teams competed, and the winning models for the competition were
selected based on maximal AUC.

In the current project, the predictive modeling aspect of the Santander Customer Satisfaction challenge took
something of a backseat. Instead, the data was used as a playground with the primary aim of exploring
an advanced technique known as model stacking, which has historically lead to winning Kaggle models.
Particular focus was given to developing and implementing an independent model stacking algorithm in the R
programming language.

Beyond this, working with the Santander Customer Satisfaction data presented additional challenges of
its own. The training dataset, an anonymized set of over 75, 000 observations in more than 300 variables,
was especially imbalanced with a mere 4% of the observations belonging to the target class. To ameliorate
the class imbalance problem, an over-sampling routine was introduced into the cross validation procedure.
Additionally, the dimensions of the data proved to be unmanageable given the limited processing power and
the computational costs associated with the validation scheme. To cope with this, the data went through a
hefty preprocessing phase that included a backwards feature selection routine. Consequently, the predictor
space was reduced to 7% its original size.

In total, eight models were developed, four of which were stacked models. The stacked models were compared
to the individual, non-stacked models and also benchmarked against the winning model in the competition.
While the stacked models performed better than any of the non-stacked models, the models did not fare as
well against the benchmark. However, such a discrepancy can be ascribed to factors outside the mechanics of
the model stacking algorithm, such as limiting the available data.

Given the project’s emphasis on model stacking, it is recommended that the associated algorithm undergo
futher fine tuning. Particular note should be given to developing preliminary or intermediate diagnostics that
might better assist in constructing the final model. The algorithm should also be compared against others
that utilize different validation schemes.

2

Figure 1: Visualizing the training of a stacked model. (Figure generated using draw.io, a free diagramming
software application.)

Background

Problem Description

Santander Bank, a subsidiary of the Santander Group, has a large presence in the Northeastern region of
the United States [1]. The success of Santander depends intimately on the company’s ability to satisfy its
customers’ financial needs. However, this is no easy task, and disgruntled customers are likely to leave without
much warning. As such, Santander would like to identify potentially unhappy customers so as to preempt
their departure.

To this end, the bank enlisted the help of determined Kagglers from around the world. The Santander
Customer Satisfaction competition was launched in March 2016 on Kaggle and ran for two months, ending
the following May. With a $60,000 prize at stake, more than 5, 000 submissions were filed. Using anonymized
data, the goal of the competition was to develop a model that could classify customers into one of two
categories: satisfied or unsatisfied. Models were evaluated on an unlabeled test set using the area under the
ROC curve, or AUC. As is standard in Kaggle competitions, the test set was partitioned into two smaller sets
leading to scores in a public and private leaderboard with the latter determining results of the competition
[2, 3, 4].

Model Stacking

Like most Kaggle competitions, the top competitors in the Santander Customer Satisfaction challenge utilized
a model ensembling technique known as model stacking, or stacked generalization [5, 6]. Though the concept
of model stacking has been around since the early 90s [7], the available literature is patchy and very often
conflicting. As such, implementations differ in many key details, and model stacking very much remains
a “black box” method in practice. The primary aim of this project, therefore, was to implement a model
stacking procedure. The key details of this procedure, given in the context of a classification problem, are
outlined below.

The motivation for employing stacked generalization is similar to any other ensembling procedure: There
is power in numbers. However, unlike boosting and bagging, which pool together a family of classifiers of

3

Data: An (n+m) × p matrix of predictors with response y
Result: A two-tiered classification model
split the data into an n× p training set and m× p validation set
select L base learners
for i = 1..L do

using the training set, perform K-fold CV on model i
end
generate K stratified folds on the training set
for i = 1..K do

for j = 1..L do
perform (K − 1)-fold CV for model j, holding out fold i
validate on fold i and store the predicted probabilities

end
end
train a meta-learner using the n× L matrix of probabilities and the n× 1 response vector y1
for j = 1..L do

using model j and the validation set, generate predicted probabilities
end
validate the meta-learner on the m× L matrix of probabilities and the m× 1 response vector y2

Algorithm 1: A model stacking algorithm.

the same type, model stacking brings together classifiers of many different types. This is accomplished by
training a so-called “meta-classifier” on the predicted probabilities of the underlying classifers. The final
result is a two-tiered model whose base level consists of an assortment of classifiers of differing types that
produce probabilities from the data and whose top level consists of an additional classifier that maps these
probabilities to a vector of final probabilites (see Figure 1).

While the general idea is fairly simple, the exact mechanics of the procedure are unfortunately muddied as
practitioners disagree on how to best embed stacking into a validation plan. The major point of contention
revolves around the issue of model overfitting. The implementation developed for this project was an
amalgamation of strategies detailed in [8, 9].

Essentially, the modeling stacking algorithm is composed of three parts. In the first part, the L base learners
are tuned on an n × p training set using K-fold cross validation. In the second part, the training set is
decomposed into K folds, which are distinct from the ones used in the previous cross validation step. One
of the folds is selected as a holdout set while the remaining K − 1 folds form a new training set on which
(K − 1)-fold cross validation is performed for each base learner. The resulting models are then used to predict
on the holdout set. This process is repeated for each fold. The proabiliites generated from each fold are
stored in an n× L matrix that is column-bound to the train response y. The meta-learner is trained on this
new data matrix. Finally, the entire model is run against an m× p validation set.

The resulting algorithm is summarized in Algorithm 1. (See Appendix D for the actual implementation
used for this project.) A couple of points are worth noting. The validation procedure contains natural
breakpoints following each of its three phases that allow for running of model diagnostics. Such diagnostics
are utilized to guide decisions regarding model selection and parameters in the sections below. Additionally,
the procedure can be easily extended to accommodate models with more than two layers though this is not
undertaken in the current project.

4

Analysis

Initial Impressions and Preprocessing

As noted above, the Santander Customer Satisfaction competition consisted of train and test datasets. The
training dataset consisted of 76, 020 observations in 369 numeric variables with a binary response; the test
dataset consisted of 75, 818 observations using the same 369 numeric variables. The data was completely
anonymized, and variable names were uninformative (and in Spanish). There were no missing values.

One of the defining characteristics of the training data was its severe class imbalance: less than 4% of
the training set observations belonged to the target class. Because such imbalance risks overfitting to the
dominant class, it was decided an over-sampling routine would be introduced into the model training routine.
The particular sampling algorithm used is called the Synthetic Minority Over-sampling TEchique, or SMOTE
for short. The SMOTE algorithm works by down-sampling the majority while over-sampling the minority
class. The over-sampling is accomplished by creating new, synthetic samples along the lines that join the
original sample to its k nearest neighbors in the minority class. This method has been shown to lead to better
classifier performance in ROC space than either under- or over-sampling alone [10]. The implementation
used for this project came from the DMwR package.

Following Algorithm 1, the training set was split into smaller train and validation sets using stratified
random sampling. The resulting sets had 60, 817 (80%) and 15, 203 (20%) observations, respectively. Both
sets contained an ID column that was removed.

Because of the high computational costs associated with the model training and sampling algorithms, the data
was further pared. The new, smaller training set underwent a series of transformations, which included a Box-
Cox transform and removal of zero variance predictors - see Appendix A for details. Additionally, predictor
pairs with absolute correlations greater than 0.95 were removed from the set. This initial preprocessing
reduced the number of predictors from 370 to 137 - a 63% reduction in the predictor space. The same
transformations were subsequently applied to the validation and test sets.

Feature selection

Though the preprocessing above signifantly reduced the size of the data, it was still thought to be too
unwieldy. The data was made more manageable by employing Recursive Feature Elimination (RFE) via the
caret package. The algorithm is a cross-validated form of backwards selection whereby smaller and smaller
subsets of the top performing predictors are retained so as to maximize the given performance metric [11].

In the present case, random forest RFE was performed on the training set using 5-fold cross validation
so as to maximize model AUC. The results are captured in Figure 2. It can be seen an optimal AUC is
obtained with only 25 of the 137 predictors. In particular, the predictor thought to be most important to the
classification task was var15. As observed by [12], the distribution of the variable suggests it contains each
customer’s age. It is interesting to note the skew in the conditional distributions (see Figure 3) reflects the
fact that younger customers are generally more satisfied with their service - or, perhaps, just less discerning
of poor service.

The results of the RFE were cross-referenced with the results of a univariate feature selection procedure
optimizing the column-wise AUC, and the two were found to be in accordance (see Appendix B.1). The
selected variables were also found to be relatively uncorrelated (see Appendix B.2). Ultimately, the optimal
set of 25 predictors was used as the final set of predictors in the training, validation, and test sets - a reduction
of 93% from the original set of predictors.

5

0.600

0.625

0.650

0.675

50 100
Variables

R
O

C
 (

C
ro

ss
−

V
al

id
at

io
n)

var15
var38

num_var45_hace3
var3

num_var45_ult1
num_var22_ult1

num_op_var41_comer_ult1
saldo_var13

num_meses_var39_vig_ult3
saldo_var42

num_var22_ult3
saldo_var30

num_var45_ult3
saldo_var24

saldo_var5
num_var22_hace3

saldo_medio_var12_hace2
saldo_medio_var13_corto_hace2

ind_var8_0
imp_op_var40_efect_ult1

ind_var7_recib_ult1
num_op_var41_ult3

num_op_var41_hace2
num_var45_hace2

num_med_var22_ult3

0 5 10 15

Scaled
Importance

V
ar

ia
bl

e

Figure 2: The results of random forest recursive feature elimination on the training set. Left: The performance
profile across different subset sizes. Right: The scaled variable importance scores of the optimal subset
predictors.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

var15 (Age)

S
ca

le
d

D
en

si
ty

y
S
U

Figure 3: Plots of var15 conditioned on the response y, where S represents the satisified customers and U the
unsatisfied customers.

Model Selection and Validation

As noted in [7], the foundation upon which an optimal stacked model is built should consist of models that
excel at different aspects of the task at hand: shallow learners, deep learners, and everything in between. With
this criteria, a tentative set of four classifiers was selected. This included a random forest (a “mid-to-deep”
bagging method) implemented via the ranger package; an XGBoost model (a “mid-to-deep” predictive
boosted trees method) implemented via the xgboost package; a GBM model (another “mid-to-deep” variant
of the previous boosted trees method) implemented via the gbm package; and an elastic net logistic regression
(a “shallow” regularization method) implemented via the glmnet package.

In accordance with Algorithm 1, each model was tuned on the entire training dataset using 5-fold cross-

6

GLMNET

Ranger

XGB

GBM

0.5 0.6 0.7 0.8 0.9

ROC

0.5 0.6 0.7 0.8 0.9

Sens

0.5 0.6 0.7 0.8 0.9

Spec

Figure 4: Resampling statistics for the tentative set of base learners. Note that satisfied customers represent
the positive class.

Cor : 0.907
S: 0.9

U: 0.894

Cor : 0.911
S: 0.905
U: 0.897

Cor : 0.96
S: 0.957
U: 0.951

ranger xgbTree gbm y

ranger
xgbTree

gbm
y

0.000.250.500.751.000.000.250.500.751.000.000.250.500.751.00 S U

0
1
2
3
4

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75

0250050007500

0250050007500

Figure 5: A pairs plot of the out-of-sample probabilities and response, where S and U represent satisfied
and unsatisfied customers, respectively. The plot shows histograms of the probabilties conditioned on the
response, a boxplot of the response, scatterplots of the probabilities plotted against eachother, densitiy plots
of the probabilities conditioned on the response, correlation statistics, and box-and-whisker plots of the
probabilities against the response.

validation to maximize AUC with the SMOTE sampling algorithm run inside each fold. The resampling
results are given in Figure 4. As expected, the models performed with varying degrees of success on different
aspects of the classification task. The random forest (Ranger) and XGB models, though performing well
overall, appeared to overfit to the majority class - evident from the high sensitivity and low specificty of
the predictions. The opposite case was true for the logistic regression model (GLMNET), which performed
poorly overall but partially redeemed itself with its higher specificity. The GBM model outperformed all the
other models in terms of AUC and general fit. Due to these results, the GLMNET model was dropped from
the set of base learners. A more fine-tuned comparison of the models is given in Appendix C.

As outlined in Algorithm 1, the the predicted probabilities from the remaining base learners were used to
tune the second layer of the model. As an intermediary step, a pairs plot of the response and the predicted

7

probabilities resulting from the cross-validation procedure was generated (see Figure 5). From this, it can
be seen the probabilities are highly correlated, especially those stemming from the boosted models. In this
setting, high correlations are not only expected but tolerated - after all, the models were trained on the same
data and perform comparably under the same performance metric. The point is that predicted probabilities
between models differ enough to be useful when pooled together.

A simple, non-regularized logistic model was chosen as a meta-learner to avoid the overhead associated with
an additional cross-validation stage. After training this model, it was realized that more stacked models could
be developed by taking different linear combinations of the probabilities from the base models developed
in the first stage of the model stacking procedure. An additional three models were constructed. The first,
AVG, was formed by taking a simple average of the Ranger, XGB, and GBM predicted probabilities; the
second, AVG_WEIGHTED, by taking a weighted average of the same probabilites with a weight ratio of
2 : 1 : 2, respectively, which was chosen by analysing the resampling results of the base models (see Appendix
C); and a third, AVG_ALL, by taking a simple average of the preceding probabilities, plus the probabilities
produced from the GLMNET model.

After constructing the models on the training set, the models were run against the validation set. Table 1
provides a summary of the final models. The stacked models performed better than any of the individual
models as expected. Interestingly, the model with the best performance was the AVG_ALL in spite of the
fact it contained the weakest classifier.

Model Description AUC
RANGER Random forest 0.8195221

XGB Extreme gradient boosting decision trees 0.8246625
GBM Gradient boosting decision trees 0.8245484

GLMNET Elastic net logistic regression 0.7658138

STACKED Base models: RANGER, XGB, GBM
Meta-classifier: Logistic regression 0.8281551

AVG Base models: RANGER, XGB, GBM
Meta-classifier: (RANGER + XGB + GBM) / 3 0.8290044

AVG_WEIGHTED Base models: RANGER, XGB, GBM
Meta-classifier: (2×RANGER + XGB + 2×GBM) / 5 0.8288215

AVG_ALL Base models: RANGER, XGB, GBM, GLMNET
Meta-classifier: (RANGER + XGB + GBM + GLMNET) / 4 0.8304236

Table 1: Summary of the validiation set results.

Results

The models developed in the preceding section were used to generate predictions on the test set, which
were subsequently submitted to Kaggle for scoring. The final results are displayed in Table 2. All the
models performed far better than a trivial model simply predicting each customer satisfied with the quality of
Santander’s services. It can also be seen that the stacked models performed better than any of the individual
models. Between the stacked models, the AVG model performed best while the AVG_ALL fared the worst
and, incidentally, took the biggest hit in AUC in the transition from validation to test set.

For comparison, the winning model in the Santander Customer Satisifaction comptetition had a final AUC
score of 0.829072 on the private leaderboard. Though this is only a difference of 0.009193, it would have
been significant in terms of leaderboard placement: Had any of the models actually been submitted into the
competition, none would have placed below even the 3, 000th position. This difference in performance is most
likely a result of reducing the available predictor space. Though necessary given the limited processing power
of the machine the models were trained on, such a decision would be anathema to most Kagglers, who would
instead opt for more computing power (for a cost).

8

Model Public Leaderboard AUC Private Leaderboard AUC
RANGER 0.821544 0.810702

XGB 0.827493 0.812445
GBM 0.829226 0.814785

GLMNET 0.764603 0.752537
STACKED 0.832911 0.819248

AVG 0.833189 0.819879
AVG_WEIGHTED 0.832937 0.819854

AVG_ALL 0.831765 0.817196

Table 2: Kaggle public and private leaderboard scores for each model.

Conclusion

The main goal of this project was to develop and implement a functional model stacking procedure to gain
insight into stacked models. Though the models stemming from this procedure are unlikely to win any
competititons, their development was informative and in line with the aims of the project.

With regard to the predictive modeling aspect of the project, it was found that the decision to scale back
the data lead to a decrease in performance with respect to the benchmark winning model. Whether this
decrease is characterized as fatal or miniscule depends entirely on context. In a Kaggle competition, it is
almost certainly to be the former. As noted above, the models developed for this project would not have even
broken into the top 3, 000. Outside the Kaggle arena, however, it would be difficult to justify the additional
computing time needed to close such a negligible performance differential. With that said, a more efficient
algorithm might better balance all of these factors.

Future work would focus on fine tuning the model stacking algorithm. To this end, it would be interesting to
see if base model probabilities could be decorrelated by training the models according to distinct performance
metrics and, if so, whether such a step would significantly increase the performance of the overall model. The
development of more precise model selection heuristics based on prelimary and/or intermediary diagnostics
would be another avenue worth exploring. Alternative algorithms employing different validation schemes
should also be investigated and compared.

9

References

[1] Wikipedia. Santander bank. https://en.wikipedia.org/wiki/Santander_Bank. Accessed: 11-6-2016.

[2] Kaggle. Santander customer satisfaction. https://www.kaggle.com/c/santander-customer-satisfaction.
Accessed: 11-6-2016.

[3] Kaggle. Kaggle faq. https://www.kaggle.com/wiki/KaggleMemberFAQ. Accessed: 11-6-2016.

[4] Kaggle. Santander customer satisfaction private leaderboard. https://www.kaggle.com/c/
santander-customer-satisfaction/leaderboard. Accessed: 11-6-2016.

[5] MLWave. Kaggle ensembling guide. http://mlwave.com/kaggle-ensembling-guide/. Accessed: 11-13-2016.

[6] dnc1994. How to rank 10% in your first kaggle competition. https://dnc1994.com/2016/05/
rank-10-percent-in-first-kaggle-competition-en/. Accessed: 11-15-2016.

[7] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[8] Erin LeDell. Ensembles in h20. https://github.com/h2oai/h2o-tutorials/blob/master/tutorials/
ensembles-stacking/H2O_World_2015_Ensembles.pdf. Accessed: 11-15-2016.

[9] J. Thompson. Ensemble modeling: Stack model example. https://www.kaggle.com/jimthompson/
house-prices-advanced-regression-techniques/ensemble-model-stacked-model-example, 9 2016. Accessed:
11-21-2016.

[10] Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. CoRR, abs/1106.1813, 2011.

[11] Max Kuhn. The caret package. http://topepo.github.io/caret/recursive-feature-elimination.html, 11
2016. Accessed: 11-25-2016.

[12] Andre Muta. Santander customer satisfaction forum. https://www.kaggle.com/c/
santander-customer-satisfaction/forums/t/19291/data-dictionary?forumMessageId=110414#
post110414. Accessed: 11-21-2016.

10

https://en.wikipedia.org/wiki/Santander_Bank
https://www.kaggle.com/c/santander-customer-satisfaction
https://www.kaggle.com/wiki/KaggleMemberFAQ
https://www.kaggle.com/c/santander-customer-satisfaction/leaderboard
https://www.kaggle.com/c/santander-customer-satisfaction/leaderboard
http://mlwave.com/kaggle-ensembling-guide/
https://dnc1994.com/2016/05/rank-10-percent-in-first-kaggle-competition-en/
https://dnc1994.com/2016/05/rank-10-percent-in-first-kaggle-competition-en/
https://github.com/h2oai/h2o-tutorials/blob/master/tutorials/ensembles-stacking/H2O_World_2015_Ensembles.pdf
https://github.com/h2oai/h2o-tutorials/blob/master/tutorials/ensembles-stacking/H2O_World_2015_Ensembles.pdf
https://www.kaggle.com/jimthompson/house-prices-advanced-regression-techniques/ensemble-model-stacked-model-example
https://www.kaggle.com/jimthompson/house-prices-advanced-regression-techniques/ensemble-model-stacked-model-example
http://topepo.github.io/caret/recursive-feature-elimination.html
https://www.kaggle.com/c/santander-customer-satisfaction/forums/t/19291/data-dictionary?forumMessageId=110414#post110414
https://www.kaggle.com/c/santander-customer-satisfaction/forums/t/19291/data-dictionary?forumMessageId=110414#post110414
https://www.kaggle.com/c/santander-customer-satisfaction/forums/t/19291/data-dictionary?forumMessageId=110414#post110414

Appendix

Appendix A

The printout below provides a summary of the transformations described in the Initial Impressions and
Preprocessing section.

Created from 60817 samples and 43 variables
##
Pre-processing:
- Box-Cox transformation (2)
- ignored (0)
- removed (41)
##
Lambda estimates for Box-Cox transformation:
-0.6, -0.1

The Box-Cox transformed variables were var15 (λ = −.01) and var38 (λ = −0.6). Histograms of the variables
before and after the transformation are given in Figure 6.

0
5000

10000
15000
20000

0 25 50 75 100
var15

C
ou

nt

0
5000

10000
15000

1.1 1.2 1.3 1.4 1.5
var15

C
ou

nt

0
5000

10000
15000
20000

0.0e+005.0e+061.0e+071.5e+072.0e+07
var38

C
ou

nt

0
2500
5000
7500

10000
12500

10.0 12.5 15.0
var38

C
ou

nt

Figure 6: Histograms of the Box-Cox transformed variables before (left) and after (right) the transformation.

11

Appendix B

Appendix B.1

As noted in the Feature selection section, the results of the random forest RFE were cross-referenced with a
univariate feature selection procedure that worked as follows. First, simple, single predictor models were
constructed for each column of the training set. For each model, the resulting AUC was computed using the
Wilcoxon Rank Sum Test. This was done via the colAUC function in the caTools package. The models were
then ranked according to AUC to gauge the importance of each predictor.

The results of this procedure for the top 25 variables are displayed in Figure 7. Noticeably, the predictors
selected are identical to the ones picked in the RFE procedure.

var15
saldo_var30
saldo_var42

saldo_medio_var5_hace2
saldo_var5

var38
num_var45_hace2

num_var45_ult1
num_var45_ult3

num_med_var45_ult3
saldo_var13
ind_var8_0

num_var22_ult1
var3

num_var45_hace3
num_meses_var39_vig_ult3
num_op_var41_comer_ult1

num_var22_ult3
num_op_var41_ult3

imp_op_var40_efect_ult1
num_op_var41_comer_ult3

num_op_var41_ult1
num_op_var41_hace2

ind_var7_recib_ult1
num_var22_hace3

0.0 0.2 0.4 0.6

AUC

V
ar

ia
bl

e

Figure 7: The results of the univarate feature selection procedure.

12

Appendix B.2

The optimal set of 25 predictors chosen by the random forest RFE were found to be relatively uncorrelated.
Figure 8 shows a correlation plot of the optimal predictors, where correlation was determined using
Spearman’s rank correlation coefficient.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: Correlation plot of the optimal predictors from resulting from the random forrest RFE.

13

Appendix C

The printout below gives resampling statistics between the base models trained in the Model Selection and
Validation section.

##
Call:
summary.diff.resamples(object = diff(results))
##
p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0
##
ROC
Ranger XGB GBM GLMNET
Ranger -0.002785 -0.006078 0.065221
XGB 1.000000 -0.003293 0.068006
GBM 1.000000 1.000000 0.071299
GLMNET 0.001260 5.961e-05 0.002046
##
Sens
Ranger XGB GBM GLMNET
Ranger -0.004982 0.031262 0.093186
XGB 0.4876295 0.036244 0.098168
GBM 0.0009586 0.0004266 0.061924
GLMNET 5.789e-06 1.181e-06 1.966e-05
##
Spec
Ranger XGB GBM GLMNET
Ranger -0.005412 -0.092248 -0.019137
XGB 1.00000 -0.086836 -0.013725
GBM 0.01032 0.05163 0.073111
GLMNET 1.00000 0.57222 0.02400

From the top table, it can be seen that the GLMNET model is an outlier in terms of AUC, which was the
central reason it was dropped from the set of base models ultimately used in the STACKED model. It can
also be seen from the second and third tables that there is strong evidence supporting the claim that the
Ranger and GBM models differ in their specificity and sensitivity - that is, their ability to correctly predict
satisfied and unsatisfied customers, respectively. This suggests that the two models, though equal in the
terms of their overall predictive abilties (see the top table), cater to different aspects of the classification task.
This observation guided the selection of the weights used for the AVG_WEIGHTED model.

14

Appendix D

The R code used to implement the model stacking algorithm - note that what was called the validation set in
the report above is referenced as the test set in the code below. The cross-validation steps were executed in
parallel on a 2012 MacBook Pro utilizing a quad core 2.9 GHz Intel Core i7 processor. The entire procedure
took around ten hours to execute.

setup the train control
my.train <- trainControl(method = "cv", number = 5, classProbs = TRUE,

summaryFunction = twoClassSummary, sampling = "smote")

setup a cluster for parallel computing
cl <- makeCluster(detectCores())
registerDoParallel(cl)

train the models
fit.ranger <- train(trainX, trainY, metric = "ROC", method = "ranger",

trControl = my.train, tuneLength = 5)

fit.xgb <- train(trainX, trainY, metric = "ROC", method = "xgbTree",
trControl = my.train, tuneLength = 5)

fit.gbm <- train(trainX, trainY, metric = "ROC", method = "gbm",
trControl = my.train, tuneLength = 5)

fit.glmnet <- train(trainX, trainY, metric = "ROC", method = "glmnet",
trControl = my.train, tuneLength = 5)

terminate workers and register a sequential backend
stopCluster(cl); registerDoSEQ()

collect resampling results
results <- resamples(list(Ranger = fit.ranger,

XGB = fit.xgb,
GBM = fit.gbm,
GLMNET = fit.glmnet))

plot resampling results
bwplot(results)

select the models to be used
models <- c("ranger", "xgbTree", "gbm")

set the positive and negative classes
note: classes are set this way to accomodate the glm model, which
automatically sets the positive class to the second level and the
negative class to the first
positive <- levels(trainY)[2]; negative <- levels(trainY)[1]

generate folds
set.seed(54321)
folds <- createFolds(trainY, k = 5)

15

adjust the train control
my.train$number <- 4

setup a matrix to store out of sample probabilities
oos.probs <- matrix(numeric(dim(trainX)[1] * length(models)),

nrow = dim(trainX)[1],
ncol = length(models))

colnames(oos.probs) <- models

setup a cluster for parallel computing
cl <- makeCluster(detectCores())
registerDoParallel(cl)

for (i in 1:length(folds)) {

set the current fold
current.fold <- unlist(folds[i])

for (j in 1:length(models)) {

fit the model on training data, minus fold i
fit <- train(trainX[-current.fold,],

trainY[-current.fold],
metric = "ROC",
method = models[j],
trControl = my.train,
tuneLength = 5)

predict on fold i and retrieve the predicted probabilities
fit.probs <- extractProb(list(fit),

testX = trainX[current.fold,],
testY = trainY[current.fold])

fit.probs <- fit.probs %>% dplyr::filter(dataType == "Test")

store the predicted probabilities
oos.probs[current.fold, j] <- fit.probs[, positive]

}

}

terminate workers and register a sequential backend
stopCluster(cl); registerDoSEQ()

fit a logistic regression model on predicted probabilities
fit.glm <- train(oos.probs,

trainY,
metric = "ROC",
method = "glm",
trControl = trainControl(method = "none",

classProbs = TRUE,
summaryFunction = twoClassSummary),

tuneLength = 5)

16

create a list of models to predict on
test.fits <- list(RANGER = fit.ranger,

XGB = fit.xgb,
GBM = fit.gbm,
GLMNET = fit.glmnet)

predict probabilities for each model
test.probs <- test.fits %>%

map(function(x) { caret::predict(x, newdata = testX, type = "prob")[, positive] })

predict remaining probabilities
test.probs$STACKED <- caret::predict(fit.glm,

newdata = data.frame(ranger = test.probs$RANGER,
xgbTree = test.probs$XGB,
gbm = test.probs$GBM),

type = "prob")[, positive]
test.probs$AVG <- (test.probs$RANGER +

test.probs$XGB +
test.probs$GBM) / 3

test.probs$AVG_WEIGHTED <- (2 * test.probs$RANGER +
test.probs$XGB +
2 * test.probs$GBM) / 5

test.probs$AVG_ALL <- (test.probs$RANGER +
test.probs$XGB +
test.probs$GBM +
test.probs$GLMNET) / 4

print the test set results
test.probs %>% map(function(x) { AUC::auc(AUC::roc(x, testY)) })

17

	Executive Summary
	Background
	Problem Description
	Model Stacking

	Analysis
	Initial Impressions and Preprocessing
	Feature selection
	Model Selection and Validation

	Results
	Conclusion
	References
	Appendix
	Appendix A
	Appendix B
	Appendix B.1
	Appendix B.2

	Appendix C
	Appendix D

