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The Problem

Consider the fourth order differential equation

u(4)(t) = λh
(
t, u(t), u′′(t)

)
, (1)

for t ∈ [0, 1], satisfying the boundary conditions

α1u(0)− γ1u(1) = β1u
′(0)− δ1u′(1) = −a, (2)

α2u
′′(0)− γ2u′′(1) = β2u

′′′(0)− δ2u′′′(1) = b, (3)

where h : [0, 1]× [0,∞)× (−∞, 0]→ [0,∞) is continuous, λ > 0,
and a, b ≥ 0; additionally, we require αi , βi , γi , δi > 0, αi > γi ,
δi > βi , and γi ≥ 2δi for i = 1, 2.



Method

1 We transform the fourth order boundary value problem into a
system of boundary value problems of Sturm-Liouville type.

2 We construct a sequence of lemmas that lead to estimates on
a particular operator.

3 We apply the Guo-Krasnosel’skii Fixed Point Theorem three
times to show the existence of at least three positive
solutions.
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Definition of a Cone

Definition: Let (X , ‖ · ‖) be a Banach space. Then C ⊂ X is a
cone provided the following hold:

If x ∈ C , then λx ∈ C for all λ > 0

If x ∈ C and −x ∈ C , then x = 0



Examples of Cones

Some examples of cones:

{x ∈ R : x ≥ 0}

0"{
(x , y) ∈ R2 : y ≥ x

}
∩
{

(x , y) ∈ R2 : y ≥ −x
}
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Guo-Krasnosel’skii Fixed Point Theorem

Theorem 1.1: Let (X , ‖ · ‖) be a Banach space and C ⊂ X be a
cone. Suppose Ω1,Ω2 are open subsets of X satisfying
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If T : C ∩ (Ω2 \ Ω1)→ C is a completely
continuous operator such that either
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Guo-Krasnosel’skii Fixed Point Theorem

Theorem 1.1: Let (X , ‖ · ‖) be a Banach space and C ⊂ X be a
cone. Suppose Ω1,Ω2 are open subsets of X satisfying
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If T : C ∩ (Ω2 \ Ω1)→ C is a completely
continuous operator such that either

1 ‖Tu‖ ≤ ‖u‖ for u ∈ C ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for
u ∈ C ∩ ∂Ω2,

or

2 ‖Tu‖ ≥ ‖u‖ for u ∈ C ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for
u ∈ C ∩ ∂Ω2,

then T has a fixed point in C ∩ (Ω2 \ Ω1).



Substitutions

To convert (1)-(3) into a system of second order differential
equations, we make the substitutions

u1 = u,

u2 = −u′′,
g(t, u1, u2) = u2,

f (t, u1, u2) = h(t, u1,−u2).



Substitutions

This gives

− u′′2 (t) = λf (t, u1, u2) , (4)

− u′′1 (t) = g (t, u1, u2) , (5)

α1u1(0)− γ1u1(1) = β1u
′
1(0)− δ1u′1(1) = −a, (6)

α2u2(0)− γ2u2(1) = β2u
′
2(0)− δ2u′2(1) = −b. (7)



Transformations

We now make use of the following transformations:

v1 = u1 −
a

2δ1
t2 +

a (2δ1 − γ1)

2δ1 (α1 − γ1)

v2 = u2 −
a

2δ2
t2 +

a (2δ2 − γ2)

2δ2 (α2 − γ2)



Transformations

Applying the transformations, (4)-(7) becomes the system of
Sturm-Liouville boundary value problems

− u′′2 (t) = λf (t, u1(t) + Q1t
2 + R1, u2(t) + Q2t

2 + R2), (8)

− u′′1 (t) = g(t, u1(t) + Q1t
2 + R1, u2(t) + Q2t

2 + R2), (9)

αiui (0)− γiui (1) = βiu
′
i (0)− δiu′i (1) = 0, (10)

where Qi =
a

2δi
and Ri = − a (2δi − γi )

2δi (αi − γi )
for i = 1, 2.



Transformations

Solutions to (8)-(10) are of the form

u2(t) = λ

∫ 1

0
G2(t, s)f (s, u1(s) + Q1s

2 + R1, u2(s) + Q2s
2 + R2)ds

u1(t) =

∫ 1

0
G1(t, s)g(s, u1(s) + Q1s

2 + R1, u2(s) + Q2s
2 + R2)ds,

where Gk(t, s) are the Green’s functions

Gk(t, s) =
1

MkNK

{
δkNkt + γkMks + γkβk , 0 ≤ t ≤ s ≤ 1,
βkNkt + αkMks + γkβk , 0 ≤ s ≤ t ≤ 1,

and Mk = δk − βk , Nk = αk − γk for k = 1, 2.



The Setup

Let (X , ‖ · ‖) be the Banach space
X = C 1([0, 1];R)× C 1([0, 1];R) endowed with the norm

‖(u1, u2)‖ = ‖u1‖∞ + ‖u2‖∞,

where ‖u‖∞ = sup
t∈[0,1]

|u(t)|.



The Setup

Define C ⊂ X to be the cone

C = {(u1, u2) ∈ X | ui is nonnegative and concave;

αiui (0)− γiui (1) = βiu
′
i (0)− δiu′i (1) = 0 for i = 1, 2}.

Next, let Ωρ denote the open set
Ωρ = {(u1, u2) ∈ X : ‖(u1, u2)‖ < ρ}.



The Setup

Lastly, define T : X → X to be the operator

T (u1, u2) = (A1(u1, u2),A2(u1, u2)),

where

A2(u1, u2)(t) = λ

∫ 1

0

G2(t, s)f (s, u1(s) +Q1s
2 +R1, u2(s) +Q2s

2 +R2)ds

and

A1(u1, u2)(t) =

∫ 1

0

G1(t, s)g(s, u1(s) + Q1s
2 + R1, u2(s) + Q2s

2 + R2)ds.

Solutions of (8)-(10) are fixed points of T .



The Setup

The following lemma gives two properties of T that are needed in
order to apply the Guo-Krasnosel’skii Fixed Point Theorem.

Lemma 0. T is a completely continuous operator and T : C → C .



Hypotheses

(H0) f , g : [0, 1]× [0,∞)2 → [0,∞) are continuous functions that
are nondecreasing in their last two variables.

(H1) There exists α, β ∈ (0, 1), α < β, such that, given
(x1, x2) ∈ [0,∞)2 with x1 + x2 6= 0, there exists k > 0 such
that f (t, x1, x2) > k for t ∈ [α, β].
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Lemma 1

Lemma 1. Suppose (H0) and (H1) hold, and let ρ∗ > 0. Then
there exists Λ such that, for every λ ≥ Λ and
(Q1,Q2,R1,R2) ∈ [0,∞)4, we have

‖T (u1, u2)‖ ≥ ‖(u1, u2)‖

for each (u1, u2) ∈ C ∩ ∂Ωρ∗ .



Lemma 2

Lemma 2. Fix Λ > 0, and suppose (H0) and (H1) hold. Then, for
every λ ≥ Λ and (Q1,Q2,R1,R2) ∈ [0,∞)4, there exists
ρ1 = ρ1(Λ,Q1,Q2,R1,R2) such that, for every ρ ≤ ρ1, we have

‖T (u1, u2)‖ ≥ ‖(u1, u2)‖

for each (u1, u2) ∈ C ∩ ∂Ωρ.
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(H0) f , g : [0, 1]× [0,∞)2 → [0,∞) are continuous functions that
are nondecreasing in their last two variables.

(H2) Let z = x1 + x2. Then

lim
z→0+

f (t, x1, x2)

z
= 0

uniformly for t ∈ [0, 1].

(H3) There exists a 0 < ζ < 2M1N1
α1(δ1+β1)

and q > 0 such that, for all

(x1, x2) ∈ [0,∞)2 with 0 < x1 + x2 < q, we have
g(t, x1, x2) ≤ ζ(x1 + x2) for each t ∈ [0, 1].
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Lemma 3

Lemma 3. Suppose (H0), (H2), and (H4) hold, and let ρ∗ > 0 be
fixed. Then given λ > 0, there exists ρ2 ∈ (0, ρ∗) and ζ > 0 such
that for every (Q1,Q2,R1,R2) ∈ [0,∞)4 with
0 < Q1 + Q2 + R1 + R2 < ζ, we have

‖T (u1, u2)‖ ≤ ‖(u1, u2)‖

for each (u1, u2) ∈ C ∩ ∂Ωρ2 .
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and r > 0 such that, for all

(x1, x2) ∈ [0,∞)2 with x1 + x2 > r , we have
g(t, x1, x2) ≤ θ(x1 + x2) for each t ∈ [0, 1].
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Lemma 4

Lemma 4. Suppose 0 < Q1 + Q2 + R1 + R2 < ζ, where ζ > 0 is
given. Suppose further that assumptions (H0), (H3), and (H5)
hold. Then, for every λ > 0, there exists ρ3 = ρ3(ζ, λ) such that
for every ρ ≥ ρ3, we have

‖T (u1, u2)‖ ≤ ‖(u1, u2)‖

for each (u1, u2) ∈ C ∩ ∂Ωρ.



Main Result

Theorem 1. Let f , g satisfy (H0)-(H5). Then there exists Λ > 0
such that, given any λ ≥ Λ, there exists ζ > 0 such that, for every
(Q1,Q2,R1,R2) ∈ [0,∞)4 satisfying 0 < Q1 + Q2 + R1 + R2 < ζ,
the system (8)-(10) has at least three positive solutions.


	The Problem
	Introduction
	Substitutions and Transformation
	The Setup
	Lemmas
	Main Result

