A Boundary Value Problem of Sturm-Liouville Type

Daniel Brumley Advisors: Dr. Michael Fulkerson, Dr. Britney Hopkins, Dr. Kristi Karber

Department of Mathematics and Statistics University of Central Oklahoma

April 1, 2016

SQ P

Consider the fourth order differential equation

$$u^{(4)}(t) = \lambda h(t, u(t), u''(t)), \qquad (1)$$

for $t \in [0, 1]$, satisfying the boundary conditions

$$\alpha_1 u(0) - \gamma_1 u(1) = \beta_1 u'(0) - \delta_1 u'(1) = -a, \qquad (2)$$

$$\alpha_2 u''(0) - \gamma_2 u''(1) = \beta_2 u'''(0) - \delta_2 u'''(1) = b,$$
(3)

where $h: [0,1] \times [0,\infty) \times (-\infty,0] \rightarrow [0,\infty)$ is continuous, $\lambda > 0$, and $a, b \ge 0$; additionally, we require $\alpha_i, \beta_i, \gamma_i, \delta_i > 0$, $\alpha_i > \gamma_i$, $\delta_i > \beta_i$, and $\gamma_i \ge 2\delta_i$ for i = 1, 2. • We transform the fourth order boundary value problem into a system of boundary value problems of Sturm-Liouville type.

• We transform the fourth order boundary value problem into a system of boundary value problems of Sturm-Liouville type.

We construct a sequence of lemmas that lead to estimates on a particular operator. • We transform the fourth order boundary value problem into a system of boundary value problems of Sturm-Liouville type.

We construct a sequence of lemmas that lead to estimates on a particular operator.

We apply the Guo-Krasnosel'skii Fixed Point Theorem three times to show the existence of at least three positive solutions. **Definition:** Let $(X, \|\cdot\|)$ be a Banach space. Then $C \subset X$ is a **cone** provided the following hold:

200

- If $x \in C$, then $\lambda x \in C$ for all $\lambda > 0$
- If $x \in C$ and $-x \in C$, then x = 0

Examples of Cones

Some examples of cones:

Some examples of cones:

•
$$\{x \in \mathbb{R} : x \ge 0\}$$

Some examples of cones:

Theorem 1.1: Let $(X, \|\cdot\|)$ be a Banach space and $C \subset X$ be a cone. Suppose Ω_1, Ω_2 are open subsets of X satisfying $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$. If $T : C \cap (\overline{\Omega_2} \setminus \Omega_1) \to C$ is a completely continuous operator such that either

Guo-Krasnosel'skii Fixed Point Theorem

Theorem 1.1: Let $(X, \|\cdot\|)$ be a Banach space and $C \subset X$ be a cone. Suppose Ω_1, Ω_2 are open subsets of X satisfying $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$. If $T : C \cap (\overline{\Omega_2} \setminus \Omega_1) \to C$ is a completely continuous operator such that either

• $||Tu|| \le ||u||$ for $u \in C \cap \partial \Omega_1$ and $||Tu|| \ge ||u||$ for $u \in C \cap \partial \Omega_2$,

Guo-Krasnosel'skii Fixed Point Theorem

Theorem 1.1: Let $(X, \|\cdot\|)$ be a Banach space and $C \subset X$ be a cone. Suppose Ω_1, Ω_2 are open subsets of X satisfying $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$. If $T : C \cap (\overline{\Omega_2} \setminus \Omega_1) \to C$ is a completely continuous operator such that either

• $||Tu|| \ge ||u||$ for $u \in C \cap \partial \Omega_1$ and $||Tu|| \le ||u||$ for $u \in C \cap \partial \Omega_2$,

Guo-Krasnosel'skii Fixed Point Theorem

Theorem 1.1: Let $(X, \|\cdot\|)$ be a Banach space and $C \subset X$ be a cone. Suppose Ω_1, Ω_2 are open subsets of X satisfying $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$. If $T : C \cap (\overline{\Omega_2} \setminus \Omega_1) \to C$ is a completely continuous operator such that either

•
$$||Tu|| \le ||u||$$
 for $u \in C \cap \partial \Omega_1$ and $||Tu|| \ge ||u||$ for $u \in C \cap \partial \Omega_2$,

or

2 $||Tu|| \ge ||u||$ for $u \in C \cap \partial \Omega_1$ and $||Tu|| \le ||u||$ for $u \in C \cap \partial \Omega_2$,

then T has a fixed point in $C \cap (\overline{\Omega_2} \setminus \Omega_1)$.

To convert (1)-(3) into a system of second order differential equations, we make the substitutions

200

- $u_1 = u$,
- $u_2 = -u''$,
- $g(t, u_1, u_2) = u_2$,
- $f(t, u_1, u_2) = h(t, u_1, -u_2).$

This gives

$$-u_{2}''(t) = \lambda f(t, u_{1}, u_{2}), \qquad (4)$$

$$-u_{1}''(t) = g(t, u_{1}, u_{2}), \qquad (5)$$

$$\alpha_{1}u_{1}(0) - \gamma_{1}u_{1}(1) = \beta_{1}u_{1}'(0) - \delta_{1}u_{1}'(1) = -a, \qquad (6)$$

$$\alpha_{2}u_{2}(0) - \gamma_{2}u_{2}(1) = \beta_{2}u_{2}'(0) - \delta_{2}u_{2}'(1) = -b. \qquad (7)$$

We now make use of the following transformations:

•
$$v_1 = u_1 - \frac{a}{2\delta_1}t^2 + \frac{a(2\delta_1 - \gamma_1)}{2\delta_1(\alpha_1 - \gamma_1)}$$

• $v_2 = u_2 - \frac{a}{2\delta_2}t^2 + \frac{a(2\delta_2 - \gamma_2)}{2\delta_2(\alpha_2 - \gamma_2)}$

Applying the transformations, (4)-(7) becomes the system of Sturm-Liouville boundary value problems

$$-u_2''(t) = \lambda f(t, u_1(t) + Q_1 t^2 + R_1, u_2(t) + Q_2 t^2 + R_2), \quad (8)$$

$$-u_1''(t) = g(t, u_1(t) + Q_1t^2 + R_1, u_2(t) + Q_2t^2 + R_2), \qquad (9)$$

$$\alpha_i u_i(0) - \gamma_i u_i(1) = \beta_i u_i'(0) - \delta_i u_i'(1) = 0,$$
(10)

where
$$Q_i = rac{a}{2\delta_i}$$
 and $R_i = -rac{a(2\delta_i - \gamma_i)}{2\delta_i(\alpha_i - \gamma_i)}$ for $i = 1, 2$.

◆ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solutions to (8)-(10) are of the form

$$egin{aligned} &u_2(t) = \lambda \int_0^1 G_2(t,s) f(s,u_1(s)+Q_1s^2+R_1,u_2(s)+Q_2s^2+R_2) ds \ &u_1(t) = \int_0^1 G_1(t,s) g(s,u_1(s)+Q_1s^2+R_1,u_2(s)+Q_2s^2+R_2) ds, \end{aligned}$$

where $G_k(t, s)$ are the Green's functions

$$G_k(t,s) = \frac{1}{M_k N_K} \begin{cases} \delta_k N_k t + \gamma_k M_k s + \gamma_k \beta_k, & 0 \le t \le s \le 1, \\ \beta_k N_k t + \alpha_k M_k s + \gamma_k \beta_k, & 0 \le s \le t \le 1, \end{cases}$$

and $M_k = \delta_k - \beta_k$, $N_k = \alpha_k - \gamma_k$ for k = 1, 2.

Let
$$(X, \|\cdot\|)$$
 be the Banach space
 $X = C^1([0, 1]; \mathbb{R}) \times C^1([0, 1]; \mathbb{R})$ endowed with the norm
 $\|(u_1, u_2)\| = \|u_1\|_{\infty} + \|u_2\|_{\infty},$
where $\|u\|_{\infty} = \sup_{t \in [0, 1]} |u(t)|.$

・ロト ・回ト ・ヨト ・ヨト

æ.

 $\mathcal{O} \land \mathcal{O}$

Define $C \subset X$ to be the cone

 $C = \{(u_1, u_2) \in X \mid u_i \text{ is nonnegative and concave}; \\ \alpha_i u_i(0) - \gamma_i u_i(1) = \beta_i u'_i(0) - \delta_i u'_i(1) = 0 \text{ for } i = 1, 2\}.$

200

Next, let Ω_{ρ} denote the open set $\Omega_{\rho} = \{(u_1, u_2) \in X : ||(u_1, u_2)|| < \rho\}.$

The Setup

Lastly, define $T: X \to X$ to be the operator

$$T(u_1, u_2) = (A_1(u_1, u_2), A_2(u_1, u_2)),$$

where

$$A_2(u_1, u_2)(t) = \lambda \int_0^1 G_2(t, s) f(s, u_1(s) + Q_1 s^2 + R_1, u_2(s) + Q_2 s^2 + R_2) ds$$

and

$$A_1(u_1, u_2)(t) = \int_0^1 G_1(t, s)g(s, u_1(s) + Q_1s^2 + R_1, u_2(s) + Q_2s^2 + R_2)ds.$$

Solutions of (8)-(10) are fixed points of T.

The following lemma gives two properties of T that are needed in order to apply the Guo-Krasnosel'skii Fixed Point Theorem.

Lemma 0. T is a completely continuous operator and $T : C \to C$.

- (H0) $f,g:[0,1]\times[0,\infty)^2\to[0,\infty)$ are continuous functions that are nondecreasing in their last two variables.
- (H1) There exists $\alpha, \beta \in (0, 1)$, $\alpha < \beta$, such that, given $(x_1, x_2) \in [0, \infty)^2$ with $x_1 + x_2 \neq 0$, there exists k > 0 such that $f(t, x_1, x_2) > k$ for $t \in [\alpha, \beta]$.

Lemma 1

Lemma 1. Suppose (H0) and (H1) hold, and let $\rho^* > 0$. Then there exists Λ such that, for every $\lambda \ge \Lambda$ and $(Q_1, Q_2, R_1, R_2) \in [0, \infty)^4$, we have

$$||T(u_1, u_2)|| \ge ||(u_1, u_2)||$$

for each $(u_1, u_2) \in C \cap \partial \Omega_{\rho^*}$.

Lemma 2

Lemma 2. Fix $\Lambda > 0$, and suppose (H0) and (H1) hold. Then, for every $\lambda \ge \Lambda$ and $(Q_1, Q_2, R_1, R_2) \in [0, \infty)^4$, there exists $\rho_1 = \rho_1(\Lambda, Q_1, Q_2, R_1, R_2)$ such that, for every $\rho \le \rho_1$, we have

 $||T(u_1, u_2)|| \ge ||(u_1, u_2)||$

for each $(u_1, u_2) \in C \cap \partial \Omega_{\rho}$.

(H2) Let $z = x_1 + x_2$. Then

$$\lim_{z\to 0^+}\frac{f(t,x_1,x_2)}{z}=0$$

uniformly for $t \in [0, 1]$.

(H2) Let $z = x_1 + x_2$. Then

$$\lim_{z \to 0^+} \frac{f(t, x_1, x_2)}{z} = 0$$

uniformly for $t \in [0, 1]$.

(H3) There exists a $0 < \overline{\zeta} < \frac{2M_1N_1}{\alpha_1(\delta_1+\beta_1)}$ and q > 0 such that, for all $(x_1, x_2) \in [0, \infty)^2$ with $0 < x_1 + x_2 < q$, we have $g(t, x_1, x_2) \le \overline{\zeta}(x_1 + x_2)$ for each $t \in [0, 1]$.

Lemma 3

Lemma 3. Suppose (H0), (H2), and (H4) hold, and let $\rho^* > 0$ be fixed. Then given $\lambda > 0$, there exists $\rho_2 \in (0, \rho^*)$ and $\zeta > 0$ such that for every $(Q_1, Q_2, R_1, R_2) \in [0, \infty)^4$ with $0 < Q_1 + Q_2 + R_1 + R_2 < \zeta$, we have

 $||T(u_1, u_2)|| \le ||(u_1, u_2)||$

for each $(u_1, u_2) \in C \cap \partial \Omega_{\rho_2}$.

SQ P

(H4) Let $z = x_1 + x_2$. Then

$$\lim_{z\to\infty}\frac{f(t,x_1,x_2)}{z}=0$$

uniformly for $t \in [0, 1]$.

(H4) Let $z = x_1 + x_2$. Then

$$\lim_{z\to\infty}\frac{f(t,x_1,x_2)}{z}=0$$

uniformly for $t \in [0, 1]$.

(H5) There exists a $0 < \theta < \frac{2M_1N_1}{\alpha_1(\delta_1+\beta_1)}$ and r > 0 such that, for all $(x_1, x_2) \in [0, \infty)^2$ with $x_1 + x_2 > r$, we have $g(t, x_1, x_2) \le \theta(x_1 + x_2)$ for each $t \in [0, 1]$.

Lemma 4

Lemma 4. Suppose $0 < Q_1 + Q_2 + R_1 + R_2 < \zeta$, where $\zeta > 0$ is given. Suppose further that assumptions (H0), (H3), and (H5) hold. Then, for every $\lambda > 0$, there exists $\rho_3 = \rho_3(\zeta, \lambda)$ such that for every $\rho \ge \rho_3$, we have

 $||T(u_1, u_2)|| \le ||(u_1, u_2)||$

for each $(u_1, u_2) \in C \cap \partial \Omega_{\rho}$.

200

Theorem 1. Let f, g satisfy (H0)-(H5). Then there exists $\Lambda > 0$ such that, given any $\lambda \ge \Lambda$, there exists $\zeta > 0$ such that, for every $(Q_1, Q_2, R_1, R_2) \in [0, \infty)^4$ satisfying $0 < Q_1 + Q_2 + R_1 + R_2 < \zeta$, the system (8)-(10) has at least three positive solutions.

